Case-Based Reasoning in Generative Agents: Review and Prospect

Haoxi Zhan · Youlin Wu · Jian Ding · Bo Xu · Liang Yang · Hongfei Lin

Dalian University of Technology, China zhan.haoxi@outlook.com

Introduction

Survey	Focus	Proposed Components
[19]	Multiagent	Decision-Making thought, Tool use, and Memory
[54]	Agent and multiagent	Brain, Perception, and Action
[48]	Agent	Profiling, Memory, Planning, and Action
[17]	Domain-Specific Agents	Perception, Reasoning & Decision Making,
		Adaptive Learning, and Personalizing
[11]	Agent	Configurator, Perception, Short-term memory,
		Actor, World model, and Cost

Existing frameworks and roadmaps for future generative agents.

Background:

- □ LLM-based agents have attracted significant research interest since the release of ChatGPT.
- ☐ Various frameworks and roadmaps have been proposed.
- ☐ Most existing frameworks focus on LLMs, lacking integration with other AI paradigms.

Contribution: Drawing on perspectives from psychology, cognitive science, psychiatry, and AI, we propose a Case-Based framework for agents.

Separation of Language and Reasoning

SHP Hypothesis:

A unified cortical area exists to process hierarchical structures.

Disapproved

- ☐ Clinical neurology cases.
- - ☐ Analysis of algebraic structures.

Dual-Process Models (Example)

- ☐ Automatic processing: carried-out automatically.
- ☐ Controlled processing: limited capacity and intentionally controlled.

Similar theories: Freud, Jung, Stanovich-West, Evans etc.

Can we automate all reasoning processes via training?

Negative

- ☐ Cognitive neuroscience.
- - ☐ Developmental psychology.

Implications: the need of various AI paradigms in agents.

Unique Role of CBR

Working Memory and Intelligence:

CBR:

The AI paradigm that mostly resembles working memory.

Advantages of using CBR as the central control unit of agents:

- ☐ Inhibitory control.
- ☐ Balance among multiple AI paradigms.
- ☐ Agent maintenance cost.

Framework & Roadmap

Languages Audio Central Control Long-Term Unit (Working Memory Memory) Inhibitory CB Inhibitory Case Bases Control (CBR) Databases Reasoning CBR KRR **Expert System**

Inspiration:

- ☐ Defining the modules according to the cognitive processes instead of the actions they involved.
- ☐ The "high cohesion, low coupling" design principles found in software engineering practice.

Modules:

- ☐ Central Control Unit: Case-based inhibitory control that chooses relevant cognitive pathways and information.
- ☐ Perception Modules: Languages, visual, audio etc.
- ☐ Reasoning Modules: Reasoning AI paradigms such as CBR, KR&R, and expert systems.
- □ Long-Term Memory: case bases, knowledge bases, etc.